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There are many results that show that causality is indeed the fundamental notion
of physics. In particular, it is known that for pointwise events, causality implies
the Lorentz group. In quantum field theory, it is known that pointwise particles
lead to divergences and therefore nonpoint particles are necessary (e.g., strings).
Since particles are nonpoint, events occurring to these particles are also nonpoint
events. In this paper, we show that even if we consider nonpoint events, causality
still implies the Lorentz group. In other words, even for nonpoint events, the
notion of causality is still fundamental.

1. INTRODUCTION

1.1. For Point Events, Causality Implies the Lorentz Group

One of the most fundamental physical notions is the notion of causality.
Many notions can be described in terms of causality: e.g., from the causality

relation of special relativity, we can uniquely determine the linear structure
of space-time (Alexandrov, 1950; Alexandrov and Ovchinnikova, 1953; Zee-

man, 1964; Kuz’ minykh, 1975, 1976; Benz, 1977; Lester, 1977a, b; 1983;

Kosheleva et al., 1977a, b; Naber, 1992; Kreinovich, 1994).

The successful reformulation of different physical concepts in terms of

the causality relation led many physicists to believe that causality is the ª only
physical variableº in the sense that everything else can be described in terms

of it (see, e.g., Finkelstein and Gibbs, 1993; Finkelstein, 1996).
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In formal terms, the above result states the following:

Definition 1. By M, we will denote a 4-dimensional space R 4.

x Elements of the set M will be called events.

x We say that an event a precedes event b (or causally precedes b),

and denote it by a # b, if

b0 2 a0 $ ! (b1 2 a1)
2 1 (b2 2 a2)

2 1 (b3 2 a3)
2

Theorem (Alexandrov ± Zeeman). Let f: M ª M be a 1±1 mapping of M
onto itself such that a # b if and only if f (a) # f (b). Then, f is linear.
Moreover, f is a composition of a Lorentz transformation, a shift in 4D space-

time, a 3D rotation, and a dilation.

1.2. In Quantum Field Theory, Events Are No Longer Pointwise

In the above result, we assumed that an event is a point in space-time,

i.e., a moment of time in the life of a pointwise particle. In quantum field

theory, it is known that pointwise particles lead to divergences; therefore, to

avoid physically meaningless infinities and get physically meaningful finite
values of physical quantities, we must consider nonpoint particles as well.
For example, a consistent theory can be built on the assumption that particles

are not points, but 1D strings in space.

When a particle is not necessarily a point in space, but may be a set of

spatial points, an event in the life of a particle (e.g., the event of transforming

one particle into another) is also no longer a point in space-time; it may

correspond to a set of points in space-time.
So, in the quantum case, we get a set of events some of which are points

in space-time and some of which are sets of points. From the mathematical

viewpoint, points in space-time can be viewed as one-point sets, so we can

simplify the mathematical picture by saying that all events are sets of points.

How can we define causality relation for these events? In general, the

causality relation a # b does not mean that the event a necessarily influenced
the event b; it means simply that a could influence b. So, to define the

causality relation between nonpoint events A, B # M, we must describe when

an event A could influence the event B. Both events consist of several

points in space-time, so A could influence B if and only if some point event

comprising A could influence one of the point events which constitute the

nonpoint event B. In mathematical terms, we thus say that A # B if and only
if a # b for some a P A and b P B.

Comment. The reader should be warned that although we use the same
symbol # to describe the old causality relation (between point events) and
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the new causality relation (between nonpoint events), some properties of the

new causality relation are quite different from the properties of the old one.

For example:

x For point events, causality is transitive: if a # b and b # c, then

a # c.

x However, the new relation # is not always transitive: e.g., if for
every real number r we denote ar 5 (r, 0, 0, 0) and take A 5
{a2, a3}, B 5 {a1, a2}, and C 5 {a0, a1}, then, as one can easily

check, we have A # B, B # C, but A Ü C.

This nontransitivity may not sound so strange if we recall that # means ª can
precede,º i.e., ª can influenceº . In the above example:

x A can influence B.

x B can influence C.

x But for A to be able to influence C we need both influences (A on

B, and B on C ), and although each of these influences can happen

on its own, both of them cannot happen.

With this reformulation, the nontransitivity becomes no more surprising than,

e.g., the fact that in traditional quantum mechanics:

x We can measure, with arbitrary accuracy, the position of a particle.

x We can measure, with arbitrary accuracy, this particle’s momentum .

x But we cannot measure both position and momentum.

1.3. Formulation of the Problem

Now, comes the question: If we have the set of events (some pointwise,

some nonpoint events), and if we only know the causality relation between

these events, can we still reconstruct the linear structure of space-time?
In other words: Will the notion of causality still be fundamental if we

take nonpoint events into consideration?

Our answer to this question is: Yes, causality is still fundamental .

2. DEFINITIONS AND THE MAIN RESULT

Definition 2. Let M 5 R 4.

x By a general event, we mean an arbitrary subset of the set M.

x We say that a general event A can precede a general event B, and

denote it by A # B, if there exist points a P A and b P B for which

a # b. The relation # will be called the causality relation for

general events.
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x By a set of events, we mean a set E of general events that includes

all one-point events.

Theorem. Let E be a set of events, and let F: E ® E be a 1±1 mapping

of the set E onto itself such that A # B if and only if F (A ) # F (B). Then,

there exists a linear mapping f : M ® M such that for each one-point event {a},
F ({a}) 5 { f(a)}. Moreover, f is a composition of a Lorentz transformation, a

shift in 4D space-time, a rotation in 3D space, and a dilation.

Comment. In other words, even for nonpoint events, causality still implies

the Lorentz group.

3. PROOF

1. We start with a set of events E and a causality relation # on this set.

We do not know which of these events are one-point events, and which are
not. Let us show that we can determine whether an event A is a one-point
event or not only by analyzing the causality relation.

1.1. First, let us show that if a P A, then for every event B P E:

x If B # {a}, then B # A

x If {a} # B, then A # B

Without losing generality, let us prove the second implication (the first impli-

cation is proved similarly). By definition of the causality relation # between

events, {a} # B means that a8 # b for some a8 P {a} and b P B. The only
element a8 in the set {a} is the element a, so we can conclude that a # b
for some b P B. Thus, a # b, where a P A and b P B, which, by definition,

means that A # B.

1.2. So, if A is not a one-point set, then there exists a set A8 Þ A with
the following property.

(*) For every event B:

x If B # A8, then B # A

x If A8 # B, then A # B

Indeed, according to point 1.1, as A8 we can take a set {a} for any a P A.

1.3. Let us show that if A is a one-point set, i.e., if A 5 {a} for some
a P A, then there cannot be a set A8 Þ A for which the property (*) is true.

Indeed, let A 5 {a} be a one-point set, and let A8 be a set for which the

condition (*) holds. Let us show that A8 5 A. Indeed, let a8 be an arbitrary

point from the set A8. Let us use the condition (*) for B 5 {a8}.
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By definition of a causality relation between events, we have B 5
{a8} # A8 and therefore, due to condition (*), we have B 5 {a8} # A 5
{a}. By definition of # , this means that a8 # a.

Similarly, from the second condition, we conclude that a # a8. Since

a and a8 are both points from M, from a # a8 and a8 # a, we conclude that

a8 5 a. Thus, every point a8 P A8 is equal to a, so A8 5 {a} 5 A. The

statement is proven.

1.4. So, we can define a one-point set exclusively in terms of the causality

relation # : an event A is a one-point set if and only if there does not exist

another event A8 Þ A for which the condition (*) is true.

2. Since we have defined one-point sets exclusively in terms of the
causality relation, any 1±1 mapping which preserves this relation therefore

preserves the property ª to be a one-point set.º Thus, for every set A 5 {a},

the result F (A ) of the causality-preserving mapping F is also a one-point

set, i.e., F (A ) 5 {a8} for some a8 P M. Let us denote the corresponding

point a8 by f (a). Thus, f is a 1±1 mapping from M to M.

For one-point sets, the new causality relation {a} # {b} coincides
exactly with the old one a # b, so, from the fact that the mapping F preserves

causality, we can conclude that the mapping f : M ® M preserves causality

as well. Thus, from the Alexandrov±Zeeman theorem, we can conclude that

f is a linear mapping and, moreover, that f is a composition of a Lorentz

transformation, a shift in 4-space, and a dilation.

The theorem is proven.

ACKNOWLEDGMENTS

The authors are thankful to V. Kreinovich and A. Kuzminykh for valu-

able discussions.

REFERENCES

Alexandrov, A. D. (1950). On Lorentz transformations, Uspekhi Matematicheskikh Nauk, 5,

187 [in Russian].

Alexandrov, A. D., and Ovchinnikova, V. V. (1953). Remarks on the foundations of special

relativity, Leningrad University Vestnik, 1953(11), 94±110 [in Russian].

Benz, W. (1977). A characterization of plane Lorentz transformations, Journal of Geometry,

10, 45±56.

Finkelstein, D. (1996). Quantum Relativity, Springer-Verlag, Heidelberg.

Finkelstein, D., and Gibbs, J. M. (1993). Quantum relativity, International Journal of Theoretical

Physics, 32, 1801.



2856 Auguston, Koshelev, and Kosheleva

Kosheleva, O. M., Kreinovich, V., and Vroegindewey, P. G. (1979a). An extension of a theorem

of A. D. Alexandrov to a class of partially ordered fields, Proceedings of the Royal

Academy of Science of Netherlands, Series A, 82(3), 363±376.

Kosheleva, O. M., Kreinovich, V., and Vroegindewey, P. G. (1979b). Note on a physical

application of the main theorem of chronogeometry , Technological University, Eindho-

ven, Netherlands.

Kreinovich, V. (1994). Approximately measured causality implies the Lorentz group: Alexan-

drov±Zeeman result made more realistic, International Journal of Theoretical Physics,

33, 1733±1747.

Kuz’ minykh, A. V. (1975). Characterization of Lorentz transformations, Soviet Mathematics

Doklady, 16, 1626 ±1628.

Kuz’ minykh, A. V. (1976). Minimal condition determining the Lorentz transformations, Siberian

Mathematical Journal , 17, 968±972.

Lester, J. A. (1977a). On null cone preserving mapping, Proceedings of Cambridge Mathematical

Society, 81, 455±462.

Lester, J. A. (1977b). Cone preserving mappings for quadratic cones over arbitrary fields,

Canadian Journal of Mathematics, 29, 1247±1253.

Lester, J. A. (1983). A physical characterization of conformal transformations of Minkowski

spacetime, Annals of Discrete Mathematics, 18, 567±574.

Naber, G. L. (1992). The Geometry of Minkowski Space-Time , Springer-Verlag, Berlin.

Zeeman, E. C. (1964). Causality implies the Lorentz group, Journal of Mathematical Physics,

5, 490±493.


